Noxious Weeds in Humboldt County and Northern Nevada
A Significant Threat to Northern Nevada’s Agriculture, and the Wildlands that Provide our Wildlife and Recreation

Prepared by:
Brad Schultz, Extension Educator, Humboldt County University of Nevada Cooperative Extension

The University of Nevada Cooperative Extension interacts with many federal, state, and county government agencies, as well as non-government organizations and individual citizens to provide Education and Research programs about noxious weeds across Nevada.

Special Publication-05-17
What is a weed, a noxious weed and an invasive weed?

A weed is any plant growing in a location where it is not desired, or at an abundance that is not acceptable. The term ‘noxious weed’ has a specific legal definition, and is any plant designated by a federal, state, or county government to be injurious to public health, agriculture, recreation, wildlife, or any public or private property. In Nevada, the Nevada Revised Statutes define “Noxious” as any species of plant which is, or is likely to be, detrimental or destructive and difficult to control or eradicate. An “invasive weed” is a plant species that can spread rapidly across a landscape. Most invasive weeds can become established in many different types of plant communities. An invasive weed may or may not be classified as a “noxious weed”, and may or may not be a native species.

How many legally designated noxious weed species are there?

- 47 Species or subspecies in Nevada
- 36 Species in Idaho
- 99 Species in Oregon
- >100 in California

What noxious weeds have been found in Humboldt County?

- Canada thistle
- Goatehead or puncturevine
- Hoary cress or Whitetop
- Leafy spurge
- Mayweed chamomile
- Medusahead
- Musk thistle
- Poison hemlock
- Russian knapweed
- Saltcedar or tamarisk
- Scotch thistle
- Spotted knapweed
- Sulfur cinquefoil
- Tall whitetop or perennial pepperweed
- Water hemlock
- Yellow starthistle

Weeds that could arrive in Humboldt County soon and where they are currently found:

- African rue Mineral and Churchill counties
- Common crupina Modoc County
- Dalmation toadflax Washoe, Modoc, Malheur and Harney counties
- Diffuse knapweed Washoe, Harney, Malheur and Owyhee counties
- Dyer’s woad Elko, Modoc, and Malheur counties
- Houndstongue Elko County
- Mediterranean sage Washoe, Modoc, Lake, Harney, Mal- and Eureka counties
- Oxeye daisy all eastern California counties
- Purple loosestrife Washoe, Elko, and Malheur counties
- Rush skeletonweed Malheur, Douglas, and Owyhee counties
- Sowthistle Washoe and Malheur counties
- Squarrose knapweed Malheur, Modoc, Lassen, and White Pine counties
- St. Johnswort Owyhee, Malheur, Harney, Modoc, and Lassen counties
- Syrian beancaper Churchill County

What are the impacts from noxious weeds?

Lower Property Values

Would you pay the asking price for these residential or agricultural weed problems?

Dalmation toadflax in your front yard

Russian knapweed in pasture land

The value of some agricultural land’s have declined as much as 80% due to noxious weeds being present. Declining property tax revenue results in fewer local services. Also, the direct sale of agricultural products declines, which further decreases local economic activity. Less economic activity further reduces local tax collection and eventually results in higher tax rates to maintain services, and/or cuts in services.

Weeds Decrease Grazing Potential

Barbs, lack of nutritious leaves, chemicals in the plant or other features reduce forage quality and/or quantity.

Once weeds become abundant less forage is available and it usually has a lower nutritional quality. These features collectively result in lower livestock production and less income.

<table>
<thead>
<tr>
<th>Weed</th>
<th>Annual Spread</th>
<th>Reduced Grazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyers woad</td>
<td>14%</td>
<td>38%</td>
</tr>
<tr>
<td>Canada thistle</td>
<td>10%</td>
<td>42%</td>
</tr>
<tr>
<td>Dalmation toadflax</td>
<td>8%</td>
<td>46%</td>
</tr>
<tr>
<td>Tall whitetop</td>
<td>9%</td>
<td>55%</td>
</tr>
<tr>
<td>Leafy spurge</td>
<td>12%</td>
<td>59%</td>
</tr>
<tr>
<td>Yellow starthistle</td>
<td>17%</td>
<td>65%</td>
</tr>
<tr>
<td>Spotted knapweed</td>
<td>24%</td>
<td>80%</td>
</tr>
</tbody>
</table>

The table on the right shows the rate at which some weeds can increase every year, and the reduction in grazing potential that can occur.
Reduced Recreational Opportunities

Many recreational activities are adversely affected by noxious weeds. These include boating and swimming (e.g. hydrilla), fishing (e.g. scotch thistle), hunting (e.g., thistles), equestrian activities, hiking (e.g. yellow starthistle), biking (goathead), and rock climbing (e.g. goathead, thistle). Once activities become unpleasant, participants will stop their activities or move them to other locations. In communities that fund some services from tax revenue generated from tourism and outdoor recreational activities, noxious weeds that reduce local participation will eventually result in lower tax revenue.

Change many flat tires recently?
What does this and similar weeds cost you in time, energy, and $$?

Habitat Loss for Wildlife

- Leafy spurge displaces desired forage plants for wildlife, eventually forming monocultures. This photo is from Montana where leafy spurge covers millions of acres.
- Leafy spurge covers hundreds of acres in Paradise Valley.
- Leafy spurge could spread throughout the Santa Rosa Mountain Range and many other mountain ranges in Humboldt County.
- All meadows, pastureland and cropland are susceptible to many different noxious weeds.

Reduced Water Quantity and Quality

- Numerous weed species use more water than native vegetation.
- This results in less water for other desired uses.
- Further, weeds can add salt and/or other chemicals to the soil that native plants do not accumulate.
 - Prevents growth of desired species and increases habitat loss
 - Results in increased erosion and/or declines in water quality
 - Ultimately water treatment costs can increase

How Widespread Are Weeds In Humboldt County and Northern Nevada?

The more time and effort invested in looking for weeds, the more noxious weeds we have found. Most mapping of noxious weeds has occurred in easily accessible areas. Most of Humboldt County and northern Nevada is remote and isolated and has not been well inventoried.

How Far and Fast Can One Species Spread?

Examples from Montana

Weeds usually spread slowly at first. This creates the impression that they are not a problem and results in the problem being ignored. The population eventually explodes and weeds seem to be everywhere. The problem quickly becomes nearly unmanageable and very costly. It is important to kill the first weeds that establish. They are the cheapest and easiest to eliminate.
How Noxious Weeds Spread

Noxious weeds never stay in one location for long. Once a new population is established, weed seeds and/or plant parts will eventually move to another location, establishing more new plants. The process may occur quickly or slowly. Some key points to understand when discussing the spread of noxious weeds are knowing where weeds can persist, the corridors and pathways along which weeds can spread, the ways in which weeds spread (mechanisms), the role of natural and human disturbances, and how landscapes are connected and their influence for how weeds move from one location to another. Large infestations often result from a breakdown in desired ecological processes.

Areas of Persistence

- Usually disturbed areas
- Disturbance is usually repeated and/or intense
- Natural and human caused
- Many shapes and sizes
- Weeds persist for long periods
- Spread to adjacent uninfested areas

Disturbance

Landscapes have many disturbances that occur on them. These disturbances may, or may not, be man caused, and many are common events that cannot be prevented. With respect to noxious weeds, disturbance is a problem for several reasons. First, it removes desired plants that compete with noxious weeds, and this competition helps keep the weeds from establishing large populations. Second, disturbance often moves seeds or plant parts that can produce new plants to areas that previously were not infested. Finally, disturbance can make a better seedbed for many noxious species.

Examples of Disturbance Events

- Fire
- Natural plant die-offs
- Insect infestations
- Animal diggings
- Floods and storms
- Landslides
- Recreation activities
- Roads
- Construction
- Railroads
- Utility corridors
- Mining
- Canals and ditches
- Animal handling facilities

Carriers of Seed and Plant Parts

- Animals
- Wild and domestic animals can carry seed in their fur, feathers, or digestive system.
- All vehicles
- Construction and agricultural equipment
- Floods
- Wind
- Contaminated crops
- Hay and animal feed
- Shoes and clothing
- Seed in contaminated soil

Landscape Connectivity

- Many natural and human disturbances create dispersal corridors, refuges for plants and seed, or both
- Virtually all points on a landscape are connected
- Weeds eventually move to many locations over time

The photo at the right shows many disturbances in the mountains connected by roads. At lower elevations, roads generally occur perpendicular to seasonal stream channels (natural disturbances). Almost every point is connected to one another, facilitating the potential spread of weeds.
There Are Five General Management Programs For Noxious Weeds

- Equipment
- Vegetation
- Animals
- Wastes
- Grounds

Equipment Management
- Clean field equipment before entering different fields
- Remove mud, dirt, and plant parts
- Use a quarantine area, if possible
- Avoid driving in weed infested areas

Vegetation Management
- Use weed-free certified seed when crops or lawns are planted
 - Use management practices that maintain the desired perennial species
 - Keep their density and vigor as high as possible
 - Apply appropriate amounts of irrigation water whenever it is available
 - Either too much or too little water can stress vegetation, creating additional openings (bare ground) where weeds can become established
- Practice crop rotations when possible
 - The same micro-environment each year will promote some species, enhancing their establishment
- Don’t plant and/or transport plants you can’t identify
- Know how your management practices will affect the vegetation they are applied to

Animal Management
- Do not overgraze meadows, pasture, and rangeland
 - Overgrazed plants have smaller root crowns and lower densities. This results in more bare ground, which promotes weed establishment.
- Don’t move animals from weedy to clean pastures when the seed is:
 - Dispersing from flowers
 - Adhered to mud that is attached to hooves and hides
- Purchase weed free forage when supplemental feed is necessary

Farm/Ranch Waste Management
- Avoid spreading weed seed in manure and/or other waste products to uninfested areas

Grounds Management
- Keep disturbed areas to a minimum
- Monitor disturbed areas regularly for newly established weeds, and treat recently germinated weeds quickly and completely
- Do not move soil from contaminated areas to uncontaminated areas
- Do not locate facilities sites (shops, corrals, etc.) in areas where it will be hard to apply physical, chemical, and/or cultural management treatments
- Know the locations of areas that may serve as refuges for weed populations, dispersal corridors, and how they are connected

Integrated Management: The goal of integrated weed management is to prevent the establishment of new populations of noxious weeds, eradicate small populations before they become large and costly to manage, and control large infestations so they do not spread, and/or reduce the productivity and biological integrity of the areas they inhabit. The concept of integrated management originates from combining the appropriate mechanical, cultural, biological, and/or chemical control methods into a comprehensive long-term treatment program, which achieves a desired outcome. Not only are the appropriate methods integrated among one another, but they are applied to appropriate areas at the correct time of the year. Timing of treatment applications is as important as the methods used. The outcome is seldom the elimination of the target weed, unless the population covers a small (<1 acre) area, but rather, keeping the weed at controllable and manageable levels.
The Basic Biology of Noxious Weeds

Managing, controlling and/or eradicating noxious weeds requires knowledge about their basic biology, especially their reproductive biology. Weeds can only increase the area they cover if they produce new plants (or plant parts that become new plants), and disperse those plants to areas previously uninfested. Each species’ specific biological and reproductive traits will influence how management and control actions for each species are implemented.

Plant Life-forms and Types of Reproduction

Noxious Weeds Have One of Three Different Life-forms

- **Annuals**
 - These species complete their entire lifecycle in one growing season
 - New plants germinate and reproduce each year
 - They reproduce only from seed
 - Annuals produce seed only once in their lifetime
 - Annuals invest energy and resources in seed production, not extensive root systems

- **Biennials**
 - These plants are similar to annual type plants, but take two or three growing seasons to complete their lifecycle
 - Biennials produce vegetative (leaf) growth (rosettes) their first year of growth
 - Seeds are produced the second or third year of growth on elongated stems that rise from the basal rosette
 - Biennials reproduce only from seed and only once

- **Perennials**
 - Live more than 2 years, and often decades or longer
 - Perennials produce seed every year, for many years
 - Many can sprout new plants from small segments (one inch long or less) of their roots

Noxious Weeds Reproduce from Seed, Vegetative Reproduction or a Combination of These Methods

- **Seed Production**
 - All noxious weeds produce seed
 - Seeds may number from hundreds to hundreds of thousands per plant
 - Seed production may be the primary or secondary method of reproduction, depending on the species
 - Dispersed seed may live (remain viable) for short periods (weeks to a year) or for many years to decades, depending on the species
 - Long-lived, viable seed in the soil creates “seed banks” that can produce new plants long after the initial weed population has been eradicated
 - Seed may be dispersed long distances from water, winds, animals, or vehicles
 - Removing/killing either the plant and/or the seed before seed formation occurs, usually prevents reproduction and new plants establishing from that year’s seed crop

- **Vegetative Reproduction**
 - Is the creation of a new plant from a “bud” located on the root or stem of an existing plant
 - Many, but not all, perennial plants can reproduce vegetatively
 - Buds can occur as frequently as every 1/2 inch on the roots and each bud can produce a new plant if the root is cut into multiple pieces
 - When plants with vegetative reproduction inhabit an area, soil disturbance and/or movement of soil from one location to another can spread these weeds very far, very quickly
 - Killing the top growth does not kill the weed and prevent future growth

Traits of Annual and Biennial Weeds

- Can develop very high plant densities
 - 1-10 or more per square foot
- Often have high seed production the first year several plants are present
 - Most, but not all, seeds germinate rapidly the first winter/spring after dispersal
 - Can result in a large seed bank, but one that is typically short-lived (1-3 years)
- Seeds often disperse long distances by many different mechanisms
- Rapid spread over long distances
- Control requires killing existing plants and all seedlings that emerge from the seed bank in coming years

Traits of Perennial Weeds

- Have a comparatively small canopy above ground
 - 1-3 feet tall
- Large root system below ground
 - Roots are typically 4 to 20+ feet deep
 - Also, they spread laterally many feet
- Makes it difficult to absorb sufficient herbicide for complete kill of roots
 - A small uptake area, but a very large root mass to kill
- Most have roots that respout when the canopy is removed, or the roots are cut into small pieces by disturbance (e.g., cultivation)
- Most have large seed production
 - Thousands to hundreds-of-thousands of seeds per plant
 - Some seeds are still alive after 5 to 20 years or longer
 - Persistent seed bank that can reestablish the weeds even when the parent plants are killed and absent for several years

The Effect of Letting a Noxious Weed Reproduce Only Once

The resource commitment and cost to control, let alone eradicate, just one species of noxious weed that reproduces once increases dramatically. If the seed is long-lived, the area must be monitored for several to many years for new plants, because each new plant can produce many more seeds. Once weeds are established, their eventual control usually requires an integrated approach that uses a combination of chemical, cultural, biological, and/or mechanical methods in a long-term systematic strategy.
There are a large number of federal, state, and local organizations involved with efforts to control noxious weeds in Humboldt County. Each provides different levels of support based on their mission and objectives. Some, such as weed districts, have regulatory authority while others have formed to improve cooperative efforts.

Government Agencies and Cooperative Organizations

- **University of Nevada Cooperative Extension – Winnemucca Office**
 - Provides education and research programs about noxious weeds
- **Humboldt County Road Department**
 - Provides funds, equipment, and/or personnel to control weeds along county roads
- **Humboldt County Weed Task Force**
 - Administrative organization designed to improve communication among the different government organizations in Humboldt County
- **Paradise Valley Weed Control District**
 - Developed a weed management plan, has a coordinator that schedules and monitors control efforts, and pursues external funding sources
 - All residents in the district pay a tax of $0.15/acre to support the purchase of herbicide and/or the purchase of contract labor for treating weed problems
- **Nevada Department of Agriculture – Winnemucca Office**
 - Manages seasonal crews that spray weeds along all state highways
 - Administers pesticide applicator exams
 - Provides support for education programs
- **Bureau of Land Management – Winnemucca Field Office**
 - Has a part-time weed specialist that conducts inventories for weed populations and applies treatment programs
 - Has recently focused on thistle and tall whitetop in parts of the Quinn River Drainage, and multiple species in and near Paradise Valley
- **United States Forest Service – Santa Rosa Ranger District**
 - Has employed a seasonal weed crew for the past several years
 - Conducts treatment and inventory throughout Santa Rosa Mountains and adjacent areas not located on the forest
- **Humboldt Watershed Cooperative Weed Management Area**
 - The entire Humboldt River watershed from Mary’s River to Lovelock
- **Gerlach Cooperative Weed Management Area**
 - All of Humboldt County, west of the Santa Rosas and north of the River

What is the Humboldt County Weed Task Force?

- Organizations working together to control noxious weeds
 - Bureau of Indian Affairs
 - Bureau of Land Management
 - Humboldt County
 - Natural Resources Conservation Service
 - Nevada Department of Agriculture
 - Nevada Department of Transportation
 - Nevada Department of Wildlife
 - Nevada Division of Forestry
 - Paradise Sonoma Conservation District
 - Paradise Valley Weed Control District
 - Quinn River Conservation District
 - Sheldon National Wildlife Refuge
 - United States Fish and Wildlife Service
 - United States Forest Service
 - University of Nevada Cooperative Extension
 - Private companies and citizens

 Can be members if they provide a written commitment to participate toward the purpose and goals of the cooperative agreement

Objectives

- Cooperatively implement a coordinated noxious weed management program (strategy) on public and private lands in Humboldt County
- Non-regulatory organization designed to improve communication
- Receive additive benefits from enhanced coordination
- Eliminate duplication of efforts
- Organized to maximize potential return
- Integrate the strengths of each organization

What is a Weed District?

- Its management focus is on private lands
- Legally organized according to State law
 - Nevada Revised Statutes 555.202 through 555.220
- Designated by the County Commission after at least one public hearing
- Has an appointed Board of Directors
- Can have a weed control officer
- Has abatement authority
- Can levy tax assessments
- Are action oriented to killing weeds and keeping land productive

What is a Cooperative Weed Management Area?

- Focus is all land regardless of ownership
- Weeds know no boundaries
- Local organizations
- Bring together landowners and managers (private, city, county, state, and federal) in a county, multi-county, or other geographical area to coordinate efforts and expertise against common invasive weeds
- Authority is a mutually agreed upon memorandum of understanding
- Not authorized by any level of government
- Non-regulatory
- No abatement authority
- Cannot levy tax assessments
- Boundaries can overlap with other organizations
- Does not supersede the authority of the member organizations
What Can The Individual Do To Control Noxious Weeds?

• Know what the major noxious weeds in your area look like
• Report noxious weed populations to an appropriate authority
 ▪ Forest Service on Forest Service administered land
 ▪ BLM on BLM administered land
 ▪ Paradise Valley Weed District for weeds in the District
 ▪ Nevada Department of Agriculture – any area
 ▪ University of Nevada Cooperative Extension – any area
• Practice land uses and management techniques that reduce the chance of spread
• Purchase weed free hay if possible
• Eliminate unnecessary disturbance to vegetation and soils
• Maintain a vigorous stand of desired perennial vegetation
• Know the areas that weeds are likely to first establish
 ▪ Periodically monitor these sites for new weeds
• Control the first weeds that establish
 ▪ These are the cheapest and easiest to control
• Use appropriate herbicides
 ▪ For the species of weed
 ▪ For the time of year or growth stage of the weed
 ▪ For the environmental setting
 ▪ For the nearby plants you want to keep alive
• ASK FOR HELP IF YOU NEED IT

Where Can You Obtain Additional Information About Noxious Weeds and Noxious Weed Issues?

There are many sources of information available to help you identify and manage noxious weeds. The Cooperative Extension Office in Winnemucca has information about every state-designated noxious weed in Nevada. This information can also be found on Cooperative Extension’s Web site: http://www.unce.unr.edu/publications/natural.htm (click the button titled “weeds”).

Useful Books and Manuals

Other web sites of interest:

Introduction to Weeds and Herbicides: http://pubs.cas.psu.edu/freepubs/pdfs/r0175.pdf
Perennial Weed Biology and Management: http://eesc.orst.edu/agconwebsites/edmat/em8776.pdf
Pasture Weed Management: http://www.agriculture.state.ia.us/pdfs/grassland2002/pastureweedmanagement.pdf
2005 North Dakota Weed Control Guide: http://www.ag.ndsu.nodak.edu/weeds/w253/w253-fe.html#LEGUME%20FORAGES

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>African rue</td>
<td>Peganum harmala</td>
</tr>
<tr>
<td>Austrian fieldcress</td>
<td>Rorippa austriaca</td>
</tr>
<tr>
<td>Austrian peaweed</td>
<td>Sphaerophysa salsula/ Swainsona salsula</td>
</tr>
<tr>
<td>Black henbane</td>
<td>Hyoscyamus niger</td>
</tr>
<tr>
<td>Camellthorn</td>
<td>Althagi camelorum</td>
</tr>
<tr>
<td>Canada thistle</td>
<td>Cirsiurn arvensce</td>
</tr>
<tr>
<td>Carolina horsettle</td>
<td>Solanum carolinense</td>
</tr>
<tr>
<td>Common cuprina</td>
<td>Crupina vulgaris</td>
</tr>
<tr>
<td>Dalmation toadflax</td>
<td>Linaria dalmatica</td>
</tr>
<tr>
<td>Diffuse knapweed</td>
<td>Centaurea diffusa</td>
</tr>
<tr>
<td>Dyer’s woad</td>
<td>Isatis tinctoria</td>
</tr>
<tr>
<td>Eurasian water-milfoil</td>
<td>Myriophyllum spicatum</td>
</tr>
<tr>
<td>Giant salvinia</td>
<td>Salvinia molesta</td>
</tr>
<tr>
<td>Goats rue</td>
<td>Galega officinalis</td>
</tr>
<tr>
<td>Green fountaingrass</td>
<td>Pennisetum setaceum</td>
</tr>
<tr>
<td>Hoary cress</td>
<td>Cardaria draba</td>
</tr>
<tr>
<td>Houndstongue</td>
<td>Cynoglossum officinale</td>
</tr>
<tr>
<td>Hydrilla</td>
<td>Hydrilla verticillata</td>
</tr>
<tr>
<td>Iberian starthistle</td>
<td>Centaurea iberica</td>
</tr>
<tr>
<td>Johnson grass</td>
<td>Sorghum halepense</td>
</tr>
<tr>
<td>Klamath weed</td>
<td>Hypericum perforatum</td>
</tr>
<tr>
<td>Leafy spurge</td>
<td>Euphorbia esula</td>
</tr>
<tr>
<td>Malta starthistle</td>
<td>Centaurea melitensis</td>
</tr>
<tr>
<td>Mayweed chamomile</td>
<td>Anthemis cotula</td>
</tr>
<tr>
<td>Mediterranean sage</td>
<td>Salvia aethiops</td>
</tr>
<tr>
<td>Medusahead</td>
<td>Taeniatherum caput-medusae</td>
</tr>
<tr>
<td>Musk thistle</td>
<td>Carduus verticillata</td>
</tr>
<tr>
<td>Poison hemlock</td>
<td>Conium maculatum</td>
</tr>
<tr>
<td>Puncturevine</td>
<td>Tribulus terrestris</td>
</tr>
<tr>
<td>Purple loosestrife</td>
<td>Lythrum salicaria, L. virgatum and their cultivars</td>
</tr>
<tr>
<td>Purple starthistle</td>
<td>Centaurea calcitrapa</td>
</tr>
<tr>
<td>Rush skeletonweed</td>
<td>Chondrilla juncea</td>
</tr>
<tr>
<td>Russian knapweed</td>
<td>Acroptilon repens</td>
</tr>
<tr>
<td>Saltcedar (tamarisk)</td>
<td>Tamarix spp</td>
</tr>
<tr>
<td>Scotch thistle</td>
<td>Onopordum acanthum</td>
</tr>
<tr>
<td>Sow thistle</td>
<td>Sonchus arvensis</td>
</tr>
<tr>
<td>Spotted knapweed</td>
<td>Centaurea mascolosa</td>
</tr>
<tr>
<td>Squarrose knapweed</td>
<td>Centaurea vrgata Lam. Var. squarrose</td>
</tr>
<tr>
<td>Sulfur cinquefoil</td>
<td>Potentilla recta</td>
</tr>
<tr>
<td>Syrian beancaper</td>
<td>Zygophyllum fabago</td>
</tr>
<tr>
<td>Tall whitetop</td>
<td>Lepidium latifolium</td>
</tr>
<tr>
<td>Water hemlock</td>
<td>Cicuta maculata</td>
</tr>
<tr>
<td>White horsernette</td>
<td>Solanum elaeagnifolium</td>
</tr>
<tr>
<td>Yellow starthistle</td>
<td>Centaurea solstitialis</td>
</tr>
<tr>
<td>Yellow toadflax</td>
<td>Linaria vulgaris</td>
</tr>
</tbody>
</table>